
CSEP504:

Advanced topics in software systems

• Overview of course, expected work, staff, …

– Differences from CSEP503 (Spring 2009)

– Most administrivia just before break

• Introduction to software architecture

• Who are you – companies, background, interests,

etc.?

• Discussion: possible third course topic

David Notkin Winter 2010 CSEP504 Lecture 1

UW CSE P504 1

Software engineering in the PMP

• Collectively and individually, you have designed,

developed, tested, shipped and maintained orders of

magnitude more software than I have

• Collectively and individually, you continue to make

design decisions, write code, test code, fix bugs, etc.

on a daily basis; I don’t

• Few of you are aware of much ongoing research in

software engineering; I am

• Few of you are able to separate quickly the good

from the bad in software engineering research; I am

good (although imperfect) at this

UW CSE P504 2

Course goals

• To expose you to key approaches in software

engineering research, with the hope that one or more

of them can help you in your daily work – perhaps

immediately, perhaps in the longer term

• Without ignoring your day-to-day issues, try to look

deeper into the issues of engineering quality software

than day-to-day pressures usually allow

• To increase your ability to communicate with software

engineering researchers and other software

engineers

UW CSE P504 3

But wait! That was CSEP503!

• Well, yes… the underlying principles and course
goals are the same as in 503

• However, 504 will focus more narrowly

– software architecture, software tools, and a topic
to be named later

• In contrast, 503 was more breadth-oriented: model
checking, bounded model checking, design,
information hiding, layering, patterns, aspect-oriented
programming, cooperative bug isolation, test
prioritization, mutation testing, concolic testing,
system summarization, …

• Some limited overlap

UW CSE P504 4

Staff

UW CSE P504 5

Sai Zhang

Reid Holmes

Yuriy Brun

―Software architecture‖

UW CSE P504 6

―Software architecture‖

• Bing (12/25/09): 1-10 of 89,800,000 results

• Google (12/25/09): Results 1 - 10 of about 1,720,000

• Searches related to software architecture

– Bing: free architecture software, 3D architecture

software, architect design software, free home

design software, floor plan design software, …

– Google: software architecture diagram, software

architecture document, software architecture

patterns, software design, enterprise architecture,

system architecture , …

UW CSE P504 7

Software architect (job title):
monsters.com posted 60 days up to 12/29/09

• Component Software

• CYBER-SECURITY

• E-Commerce

• Ethernet Switch

• GUI Software

• Perl Developer

• SDR

• Federal Health IT

• Senior Java Developer

• C#- C++ - P2P -...

• C/C++ - Algorithms

• Embedded Systems

• .Net - SQL Server

• Secure Design

• VMWare

• Team Lead/Manager

• Cognos TM1 Technical Architect

• Enterprise Architect

• Enterprise Software Architect - C# ..

• IT Architect - Software

• J2EE Architect

• .NET Architect

• Software Development & Testing

Architect

• Enterprise Architect

• Sharepoint Architect

• Software User Interface Architect

• Solution Architect w/Business

Services

• Application Architect

• System/Software Engineer-Architect

• Web Architect

UW CSE P504 8

Some (wildly incomplete) history

• Peter Naur @ 1968 NATO conference

• “…software designers are in a similar position to architects and

civil engineers, particularly those concerned with the design of

large heterogeneous constructions, such as towns and industrial

plants. It therefore seems natural that we should turn to these

subjects for ideas about how to attack the design problem. As

one single example of such a source of ideas I would like to

mention: Christopher Alexander: Notes on the Synthesis of

Form (Harvard Univ. Press, 1964)”

UW CSE P504 9

R. Fennell. Multiprocess Software Architecture for AI

Problem Solving

• Carnegie-Mellon University, May 1975

• This dissertation describes the design and development of a

knowledge-based artificial intelligence problem-solving organization

that is suitable for efficient implementation on a closely-coupled

multiprocessor computer system. The method is a result of formulating

the problem-solving organization in terms of the hypothesize-and-test

paradigm for heuristic search, with communication between the various

hypothesizers and testers being effected by writing intermediate results

in a shared blackboard-like data base. These hypothesizers and testers

are expressed in terms of knowledge sources which represent bodies

of suitably organized subject-matter knowledge pertinent to the task

domain of the problem being solved. The various system organization

problems connected with such a multiprocessing scheme are

discussed, and solutions to these problems are presented. The major

contributions of this work lie in the analysis and solution of the various

multiprocessing problems that have arisen in the course of specifying

this problem-solving organization.

UW CSE P504 10

Wulf, W. A. Reliable hardware-software architecture

• SIGPLAN Notices (1975).

• This paper deals with the problem of reliability in a

hardware/software system. More specifically it deals with the

strategy used to achieve reliability in a particular

hardware/software system built by the author and his colleagues

at Carnegie-Mellon University. Rather than dealing with the

myriad details of the reliability aspects of this systems, the paper

focuses on the design philosophy which aims at keeping the

system operational even though the underlying hardware may

be malfunctioning. This philosophy is essentially an extension of

the 'modular' programming methodology, advocated by Parnas

and others, to include dynamic error detection and recovery.

UW CSE P504 11

The Dorado Smalltalk-80 Implementation: Hardware

Architecture's Impact on Software Architecture

• Peter Deutsch, Smalltalk-80: Bits of History, Words of Advice,

1983

• Describes a mostly-microcode implementation of the ST-80 VM.

UW CSE P504 12

White, J. R., Booth, T. L., Towards an engineering

approach to software design

• Proceedings of the 2nd International Conference on Software

Engineering (1976).

• The software design process is discussed from an engineering

point of view. Initially, a distinction is made between software

design and program design. Software design is then described

in terms of evolving a system architecture independently of

implementation considerations. Computation structures are

introduced as a means of modeling the dynamic behavior of a

software architecture. Functional completeness, quality,

machine independence, and performance completeness of a

design are then used as criteria for engineering design

decisions. Finally, the basic elements of a system to support the

software design process are described

UW CSE P504 13

Scott, L. R., An engineering methodology for presenting

software functional architecture.

• Proceedings of the 3rd international Conference on Software

Engineering (1978)

• A method of presenting software architecture has been

developed which is useful for reviewing and documenting

software designs. Diagrams showing all software levels as well

as inputs and outputs are systematically developed to provide

an understanding of the construction and operation of software

systems and programs. The manner in which the software

architecture is displayed provides an effective way for managers

to understand and review software designs.

UW CSE P504 14

D. J. Mishelevich et al.. Application development system: The

software architecture of the IBM Health Care Support/DL/I-Patient

Care System

• IBM Systems Journal 19, 4 (1980)

• Application development productivity is a broad-based concern. A

system answering this concern is the IBM Health Care Support/DL/I-

Patient Care System announced by IBM in late 1977. The system is of

general importance because its application development system

architecture is not application specific and thus can be used for the

rapid development of many types of on-line systems. It has an elegant

simplicity, and it uses the standard facilities of such operating system

components as CICS/VS and DL/I. The application productivity has

been clearly and successfully demonstrated in the real working

environment of the Dallas County Hospital District (Parkland Memorial

Hospital) and other sites. This paper provides an architectural overview

followed by a description with an example of CRT (cathode ray tube)

screen and print format design and coding and an examination of a

data collection list to demonstrate the power of that facility.

UW CSE P504 15

D.L. Weller et al. Software architecture for graphical

interaction

• IBM Systems Journal 19, 3 (1980)

• Pointing at items on a graphics display is one of the most useful

methods of interacting with a system graphically. This paper

examines existing graphical support and lists requirements for

high-level support of graphical interaction. The architecture of a

prototype system with high-level support for graphical interaction

is presented. This includes database support for manipulating

graphical data and device-independent graphical support based

on a proposed standard for graphical interaction. Algorithms are

presented for identifying items selected from a display by the

user. Inclusion of a database management system in graphical

software support is shown to be helpful in meeting the

requirements of interactive graphical application programs.

UW CSE P504 16

Sandewall, E., et al., Software architecture based on

communicating residential environments.

• Proceedings of the 5th international Conference on Software

Engineering, 1981.

• This paper describes an alternative approach to software

architecture, where the classical division of responsibilities

between operating systems, programming languages and

compilers, and so forth is revised. Our alternative is organized

as a set of self-contained environments which are able to

communicate pieces of software between them, and whose

internal structure is predominantly descriptive and declarative.

The base structure within each environment (its diversified shell)

is designed so that it can accommodate such arriving software

modules. The presentation of that software architecture is done

in the context of an operational implementation, the SCREEN

system (System of Communicating REsidential ENvironments).

UW CSE P504 17

Lawson, D., A New Software Architecture for Switching

Systems

• IEEE Transactions on Communications 30, 6 (1982)

• Electronic switching systems were introduced in the mid1960's,

and have since undergone constant modifications to provide

new features, expand into new applications, and adapt to new

hardware technologies. The increasing costs of software

development have led to the need to reexamine the design

concepts of present systems and define more cost-effective

architectures. The specifications and derivation of a new

modular switching system architecture which addresses the

problems of constant change are discussed.

UW CSE P504 18

P. E. Satterlee, Jr., H. L. Martin, J. N. Herndon. CONTROL

SOFTWARE ARCHITECTURE AND OPERATING MODES OF

THE MODEL M-2 MAINTENANCE SYSTEM

• American Nuclear Society Topical Meeting on Robotics and

Remote Handling in Hostile Environments, April 1984

• The Model M-2 maintenance system Is the first completely

digitally controlled servomanipulator. The M-2 system allows

dexterous operations to be performed remotely using bilateral

force-reflecting master/slave techniques, and its integrated

operator interface takes advantage of touch-screen-driven

menus to allow selection cf all possible operating modes. The

control system hardware for this system has been described

previously. This paper describes the architecture of the overall

control system. The system's various modes of operation are

identified, the software implementation of each Is described,

system diagnostic routines are described, and highlights of the

computer-augmented operator interface are discussed.

UW CSE P504 19

UW CSE P504 20

How can anyone govern a nation that has two

hundred and forty-six different kinds of cheese?

-- Charles de Gaulle

Two categories: very soft distinction

• Software architecture: design-oriented

– Based in software design, in defining taxonomies

based on experience, etc.

• Software architecture: property-oriented

– Based on a desire to design software systems

with a particular property – such as autonomic

systems, fault-tolerance, privacy, etc.

UW CSE P504 21

Software architecture: design-oriented

UW CSE P504 22

Design

• Mid-1960’s present

• Structured design, information hiding,
abstract data types, aspect-orientation, …

Architecture

• Mid-1990’s present

• Architectural styles, architecture description
languages, patterns, frameworks, …

Software design: a fast history

• ―design‖ – in OED

– Noun: nine definitions, 1462

words

– Verb: 16 definitions, 2165

words

• Brooks’ 1993

– rationalism — the doctrine

that knowledge is acquired

by reason without resort to

experience [WordNet]

– empiricism — the doctrine

that knowledge derives from

experience [WordNet]

UW CSE P504 23

Rational Empirical

Aristotle Galileo

France Britain

Descartes Hume

Roman law Anglo-Saxon law

Prolog Lisp

Algol Pascal

Dijkstra Knuth

Program proofs Program testing

Computing examples due to

Wegner

Characteristics of software design

• Complexity

• Multi-level, continuous, iterative

• Broad potential solution space

• Relatively unclear criteria for selecting solution

UW CSE P504 24

UW CSE P504 25

Complexity

• ―Software entities are more complex for their size

than perhaps any other human construct, because no

two parts are alike (at least above the statement

level). If they are, we make the two similar parts into

one… In this respect software systems differ

profoundly from computers, buildings, or

automobiles, where repeated elements abound.‖

—Brooks, 1986

UW CSE P504 26

Continuous & iterative

• High-level (―architectural‖) design

– What pieces?

– How connected?

• Low-level design

– Should I use a hash table or binary search tree?

• Very low-level design

– Variable naming, specific control constructs, etc.

– About 1000 design decisions at various levels are

made in producing a single page of code

Almost never a key part of architecture

Broad solution space

• How do we select a design?

– We determine the desired criteria

– We select a design that will achieve those criteria

• In practice, it’s hard to

– Determine the desired criteria with precision

– Tradeoff among various conflicting criteria

– Figure out if a design satisfies given criteria

– Find a better one that satisfies more criteria

• In practice, it’s easy to

– Build something designed pretty much like the last one

– This has benefits, too: understandability, properties of
the pieces, etc.

UW CSE P504 27
Almost always a key part of architecture

Criteria for success include…

• Correctness

• Readability

• Usability

• Modifiability

• Robustness

• Security

• Safety

• Performance

• Cost

• Time-to-market

• Profit

• Adoption

• Compatibility

• Extensibility

• Reusability

• Fault-tolerance

• Conceptual integrity

• …

UW CSE P504 28

UW CSE P504 29

Conceptual integrity

• Brooks and others assert that conceptual integrity is

a critical criterion in design

– ―It is better to have a system omit certain

anomalous features and improvements, but to

reflect one set of design ideas, than to have one

that contains many good but independent and

uncoordinated ideas.‖ —Brooks, MMM

• Such a design often makes it far easier to decide

what is easy and reasonable to do as opposed to

what is hard and less reasonable to do

―Internal‖ criteria for success include

• Cohesion

• Coupling

• Complexity

• Correctness

• Correspondence

UW CSE P504 30

UW CSE P504 31

Cohesion

• The reason that elements are found together in a

module (coincidental, temporal, functional, …)

• During maintenance, one of the major structural

degradations is in cohesion

• Hard to measure quantitatively

UW CSE P504 32

Coupling

• Strength of interconnection between modules

• Hierarchies are touted as a wonderful coupling

structure, limiting interconnections

• Coupling also degrades over time

• Many quantitative measures – of questionable utility

UW CSE P504 33

Complexity

• Simpler designs are better, all else being equal

• But, few useful measures of design/program

complexity exist

• There are dozens of such measures

– McCabe’s cyclomatic complexity = E - N + p

• E = the number of edges of the CFG

• N = the number of nodes of the CFG

• p = the number of connected components

– Function points, feature points, …

• My understanding is that, to the first order, most of

these measures are linearly related to ―lines of code‖

UW CSE P504 34

Correctness

• Even if you ―prove‖ modules are correct, composing

the modules’ behaviors to determine the system’s

behavior is hard

• Leveson and others have shown clearly that a

system can fail even when each of the pieces work

properly – this is because many systems have

―emergent‖ properties

• Arguments are common about the need to build

―security‖ and ―safety‖ and … in from the beginning

Correspondence

• ―Problem-program mapping‖

• The way in which the design is associated with the

requirements

• The idea is that the simpler the mapping, the easier it

will be to accommodate change in the design when

the requirements change

• M. Jackson: problem frames

– In the style of Polya

UW CSE P504 35

UW CSE P504 36

Defining structure

• The focus of most design approaches is structure

• What are the components and how are they put together?

• Behavior is important, but often largely indirectly

Almost always a key part of architecture

The technique of mastering complexity has been known since

ancient times: Divide et impera (Divide and Rule). —Dijkstra, 1965

…as soon as the programmer only needs to consider intellectually

manageable programs, the alternatives he is choosing from are

much, much easier to cope with. —Dijkstra, 1972

The complexity of the software systems we are asked to develop is

increasing, yet there are basic limits upon our ability to cope with this

complexity. How then do we resolve this predicament?

—Booch, 1991

Structured programming

• Dijkstra observed that a programmer manipulates source code to

modify program behaviors – obvious, perhaps, but oft-ignored

• He noted that any gap between the static structure of the program

and its dynamic behaviors can cause confusion as people are

better able to reason about static than dynamic structures

• Using one-in-one-out control structures brought the static structure

and dynamic behaviors closer together

UW CSE P504 37

Functional decomposition I

• Divide-and-conquer based on functions

• input;

• compute;

• output

• Then proceed to decompose compute

• This is stepwise refinement [Wirth, Dijkstra, Hoare, …]

• There is an enormous body of work in this area,

including many formal calculi to support the approach

– Closely related to proving programs correct

– Weakest preconditions, Hoare triples, …

UW CSE P504 38

Functional decomposition II

• Heavily focused on

creating

implementations

that satisfy

specifications

• More effective in the

face of stable

specifications

– Which decisions

must be repeated?

Program

Input

Read Parse

Compute

X

A B

C D

Y

Output

UW CSE P504 39

Interlude: it’s all about you!

• Companies, organizations?

• Job focus (development, testing, etc.)?

• Domain?

• Undergraduate degree in …?

• …

UW CSE P504 40

A shift to a focus on change

Parnas CACM 1972

―A lucid statement of the philosophy of modular programming can

be found in a 1970 textbook on the design of system programs by

Gouthier and Pont [1, ¶I0.23]…:

―A well-defined segmentation of the project effort ensures

system modularity. Each task forms a separate, distinct

program module. At implementation time each module and its

inputs and outputs are well-defined, there is no confusion in the

intended interface with other system modules. …

―Usually nothing is said about the criteria to be used in dividing the

system into modules. This paper will discuss that issue and, by

means of examples, suggest some criteria which can be used in

decomposing a system into modules.‖

• The major criterion observed by Parnas is to identify likely

changes and design to make them easier to accommodate

UW CSE P504 41

UW CSE P504 42

Accommodating change

• ―…accept the fact of change as a way of life, rather

than an untoward and annoying exception.‖

—Brooks, 1974

• ―Software that does not change becomes useless

over time.‖ —Belady and Lehman

• It is generally believed that to accommodate change

one must anticipate possible changes

– Counterpoint: Extreme Programming

• By anticipating changes, one defines additional

criteria for guiding the design activity

• But it is not possible to anticipate all changes

Information hiding

• Information hiding is perhaps the most important

intellectual tool developed to support software design

– Makes the anticipation of change a centerpiece in

decomposition into modules

• Provides the fundamental motivation for abstract data

type (ADT) languages

– And thus a key idea in the OO world, too

• The conceptual basis is key

UW CSE P504 43

UW CSE P504 44

Basics of information hiding

• Modularize based on anticipated change

– Fundamentally different from Brooks’ approach in

OS/360 (see old and new MMM)

• Separate interfaces from implementations

– Implementations capture decisions likely to

change

– Interfaces capture decisions unlikely to change

– Clients know only interface, not implementation

– Implementations know only interface, not clients

• Modules are work assignments

Outstanding questions

• Can we effectively anticipate changes?

• Is it true that changing an implementation is the best

change, since it’s isolated?

• What does it mean for the semantics of the module to

remain unchanged when implementations are

modified?

• To what degree can one implementation satisfy

multiple clients?

UW CSE P504 45

UW CSE P504 46

Information Hiding and OO

• Are these the same? No

– OO classes are chosen based on the domain of

the problem (in most OO analysis approaches)

– Not necessarily based on change

• But they are obviously related (separating interface

from implementation, e.g.)

• Modeling vs. lower-level design confuses the issue

somewhat

Layering

• Parnas also considered abstract machines (layers) in

support of program families [1979]

– Systems that have ―so much in common that it

pays to study their common aspects before

looking at the aspects that differentiate them‖

• Still focused on anticipated change

UW CSE P504 47

The uses(A,B) relation

• A program A uses a program B if the correctness of A

depends on the presence of a correct version of B

• A non-hierarchical uses relation makes it difficult to

produce useful subsets of a system

• So, it is important to design the uses relation

– A is essentially simpler because it uses B

– B is not substantially more complex because it

does not use A

– There is a useful subset containing B but not A

– There is no useful subset containing A but not B

UW CSE P504 48

Modules and layers are orthogonal

UW CSE P504 49

Process

Creation

Segment

management

Process

Management

Segment

Creation

uses

uses

uses

Segment
ADT

Process
ADT

UW CSE P504 50

Implicit invocation: event-based design

• Again, a focus on change

• Components announce events that

other components can choose to

respond to

• Yellow and red register interest in

an event from blue

– When blue announces that

event, yellow and red are

invoked

• In implicit invocation, the invokes

relation is the inverse of the names

relation

• Invocation does not require ability to

name

Dijkstra reprise: static ~ dynamic

• The simpler static-dynamic relation Dijkstra advocated is made

more complex by information hiding, by layering, by implicit

invocation, etc.

• That is, we’ve collectively decided that the power of these

mechanisms in practice dominates the desire for that simplicity

UW CSE P504 51

Aspect-oriented design

• Much work on aspect-oriented design came from

concerns expressed by Kiczales about conventional

information hiding: clients depend on some aspects

of the underlying implementations in a broad variety

of domains and situations

• What happens when the implementation strategy for

a module depends on how it will be used? Aren’t we

supposed to separate policy from mechanism?

• Example: spreadsheet via many small windows?

UW CSE P504 52

Poor client performance often leads to…

“hematomas of

duplication”

“coding between the

lines”

UW CSE P504 53

Open implementation

• Decompose into base interface (the ―real‖ operations) and the

meta interface (the operations that let the client control aspects

of the implementation)

• Arose from work in (roughly) reflection in the Meta-Object

protocol (MOP) and led to the development of aspect-oriented

programming

UW CSE P504 54

Leap to aspect-oriented design
Slides modified from Kiczales

55

/*

* ==

*

* The Apache Software License, Version 1.1

*

* Copyright (c) 1999 The Apache Software Foundation. All rights

* reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. The end-user documentation included with the redistribution, if

* any, must include the following acknowlegement:

* "This product includes software developed by the

* Apache Software Foundation (http://www.apache.org/)."

* Alternately, this acknowlegement may appear in the software

itself,

* if and wherever such third-party acknowlegements normally appear.

*

* 4. The names "The Jakarta Project", "Tomcat", and "Apache Software

* Foundation" must not be used to endorse or promote products

derived

* from this software without prior written permission. For written

* permission, please contact apache@apache.org.

*

* 5. Products derived from this software may not be called "Apache"

* nor may "Apache" appear in their names without prior written

* permission of the Apache Group.

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

* ==

*

* This software consists of voluntary contributions made by many

* individuals on behalf of the Apache Software Foundation. For more

* information on the Apache Software Foundation, please see

* <http://www.apache.org/>.

*

* [Additional notices, if required by prior licensing conditions]

*

*/

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;

import org.apache.tomcat.util.StringManager;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Core implementation of an application level session

*

* @author James Duncan Davidson [duncan@eng.sun.com]

* @author Jason Hunter [jch@eng.sun.com]

* @author James Todd [gonzo@eng.sun.com]

*/

public class ApplicationSession implements HttpSession {

private StringManager sm =

StringManager.getManager("org.apache.tomcat.session");

private Hashtable values = new Hashtable();

private String id;

private ServerSession serverSession;

private Context context;

private long creationTime = System.currentTimeMillis();;

private long thisAccessTime = creationTime;

private long lastAccessed = creationTime;

private int inactiveInterval = -1;

private boolean valid = true;

ApplicationSession(String id, ServerSession serverSession,

Context context) {

this.serverSession = serverSession;

this.context = context;

this.id = id;

this.inactiveInterval = context.getSessionTimeOut();

if (this.inactiveInterval != -1) {

this.inactiveInterval *= 60;

}

}

ServerSession getServerSession() {

return serverSession;

}

/**

* Called by context when request comes in so that accesses and

* inactivities can be dealt with accordingly.

*/

void accessed() {

// set last accessed to thisAccessTime as it will be left over

// from the previous access

lastAccessed = thisAccessTime;

thisAccessTime = System.currentTimeMillis();

validate();

}

void validate() {

// if we have an inactive interval, check to see if we've exceeded it

if (inactiveInterval != -1) {

int thisInterval =

(int)(System.currentTimeMillis() - lastAccessed) / 1000;

if (thisInterval > inactiveInterval) {

invalidate();

}

}

}

// HTTP SESSION IMPLEMENTATION METHODS

public String getId() {

if (valid) {

return id;

} else {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

}

public long getCreationTime() {

if (valid) {

return creationTime;

} else {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

}

/**

*

* @deprecated

*/

public HttpSessionContext getSessionContext() {

return new SessionContextImpl();

}

public long getLastAccessedTime() {

if (valid) {

return lastAccessed;

} else {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

}

public void invalidate() {

serverSession.removeApplicationSession(context);

// remove everything in the session

Enumeration enum = values.keys();

while (enum.hasMoreElements()) {

String name = (String)enum.nextElement();

removeValue(name);

}

valid = false;

}

public boolean isNew() {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

if (thisAccessTime == creationTime) {

return true;

} else {

return false;

}

}

/**

* @deprecated

*/

public void putValue(String name, Object value) {

setAttribute(name, value);

}

public void setAttribute(String name, Object value) {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

if (name == null) {

String msg = sm.getString("applicationSession.value.iae");

throw new IllegalArgumentException(msg);

}

removeValue(name); // remove any existing binding

if (value != null && value instanceof HttpSessionBindingListener) {

HttpSessionBindingEvent e =

new HttpSessionBindingEvent(this, name);

((HttpSessionBindingListener)value).valueBound(e);

}

values.put(name, value);

}

/**

* @deprecated

*/

public Object getValue(String name) {

return getAttribute(name);

}

public Object getAttribute(String name) {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

if (name == null) {

String msg = sm.getString("applicationSession.value.iae");

throw new IllegalArgumentException(msg);

}

return values.get(name);

}

/**

* @deprecated

*/

public String[] getValueNames() {

Enumeration e = getAttributeNames();

Vector names = new Vector();

while (e.hasMoreElements()) {

names.addElement(e.nextElement());

}

String[] valueNames = new String[names.size()];

names.copyInto(valueNames);

return valueNames;

}

public Enumeration getAttributeNames() {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

Hashtable valuesClone = (Hashtable)values.clone();

return (Enumeration)valuesClone.keys();

}

/**

* @deprecated

*/

public void removeValue(String name) {

removeAttribute(name);

}

public void removeAttribute(String name) {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

if (name == null) {

String msg = sm.getString("applicationSession.value.iae");

throw new IllegalArgumentException(msg);

}

Object o = values.get(name);

if (o instanceof HttpSessionBindingListener) {

HttpSessionBindingEvent e =

new HttpSessionBindingEvent(this,name);

((HttpSessionBindingListener)o).valueUnbound(e);

}

values.remove(name);

}

public void setMaxInactiveInterval(int interval) {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

inactiveInterval = interval;

}

public int getMaxInactiveInterval() {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

return inactiveInterval;

}

}

//---

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;

import org.apache.tomcat.util.StringManager;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Core implementation of a server session

*

* @author James Duncan Davidson [duncan@eng.sun.com]

* @author James Todd [gonzo@eng.sun.com]

*/

public class ServerSession {

private StringManager sm =

StringManager.getManager("org.apache.tomcat.session");

private Hashtable values = new Hashtable();

private Hashtable appSessions = new Hashtable();

private String id;

private long creationTime = System.currentTimeMillis();;

private long thisAccessTime = creationTime;

private long lastAccessed = creationTime;

private int inactiveInterval = -1;

ServerSession(String id) {

this.id = id;

}

public String getId() {

return id;

}

public long getCreationTime() {

return creationTime;

}

public long getLastAccessedTime() {

return lastAccessed;

}

public ApplicationSession getApplicationSession(Context context,

boolean create) {

ApplicationSession appSession =

(ApplicationSession)appSessions.get(context);

if (appSession == null && create) {

// XXX

// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);

appSessions.put(context, appSession);

}

// XXX

// make sure that we haven't gone over the end of our

// inactive interval -- if so, invalidate and create

// a new appSession

return appSession;

}

void removeApplicationSession(Context context) {

appSessions.remove(context);

}

/**

* Called by context when request comes in so that accesses and

* inactivities can be dealt with accordingly.

*/

void accessed() {

// set last accessed to thisAccessTime as it will be left over

// from the previous access

lastAccessed = thisAccessTime;

thisAccessTime = System.currentTimeMillis();

}

void validate()

void validate() {

// if we have an inactive interval, check to see if

// we've exceeded it

if (inactiveInterval != -1) {

int thisInterval =

(int)(System.currentTimeMillis() - lastAccessed) / 1000;

if (thisInterval > inactiveInterval) {

invalidate();

ServerSessionManager ssm =

ServerSessionManager.getManager();

ssm.removeSession(this);

}

}

}

synchronized void invalidate() {

Enumeration enum = appSessions.keys();

while (enum.hasMoreElements()) {

Object key = enum.nextElement();

ApplicationSession appSession =

(ApplicationSession)appSessions.get(key);

appSession.invalidate();

}

}

public void putValue(String name, Object value) {

if (name == null) {

String msg = sm.getString("serverSession.value.iae");

throw new IllegalArgumentException(msg);

}

removeValue(name); // remove any existing binding

values.put(name, value);

}

public Object getValue(String name) {

if (name == null) {

String msg = sm.getString("serverSession.value.iae");

throw new IllegalArgumentException(msg);

}

return values.get(name);

}

public Enumeration getValueNames() {

return values.keys();

}

public void removeValue(String name) {

values.remove(name);

}

public void setMaxInactiveInterval(int interval) {

inactiveInterval = interval;

}

public int getMaxInactiveInterval() {

return inactiveInterval;

}

// XXX

// sync'd for safty -- no other thread should be getting something

// from this while we are reaping. This isn't the most optimal

// solution for this, but we'll determine something else later.

synchronized void reap() {

Enumeration enum = appSessions.keys();

while (enum.hasMoreElements()) {

Object key = enum.nextElement();

ApplicationSession appSession =

(ApplicationSession)appSessions.get(key);

appSession.validate();

}

}

}

Bad modularity

• scattering – code spread

around

• tangling – code in one region

addresses multiple concerns

;

/**

* Standard implementation of the Session

interface. This object is

* serializable, so that it can be stored in

persistent storage or transferred

* to a different JVM for distributable session

support.

* <p>

* IMPLEMENTATION NOTE: An instance of this

class represents both the

* internal (Session) and application level

(HttpSession) view of the session.

* However, because the class itself is not declared

public, Java logic outside

* of the <code>org.apache.tomcat.session</code>

package cannot cast an

* HttpSession view of this instance back to a

Session view.

*

* @author Craig R. McClanahan

* @version $Revision: 1.2 $ $Date: 2000/05/15

17:54:10 $

*/

final class StandardSession

implements HttpSession, Session {

// --

------------- Constructors

/**

* Construct a new Session associated with the

specified Manager.

*

* @param manager The manager with which this

Session is associated

*/

public StandardSession(Manager manager) {

super();

this.manager = manager;

}

/**

* The last accessed time for this Session.

*/

private long lastAccessedTime = creationTime;

/**

* The Manager with which this Session is

associated.

*/

private Manager manager = null;

/**

* The maximum time interval, in seconds, between

client requests before

* the servlet container may invalidate this

session. A negative time

* indicates that the session should never time

out.

*/

private int maxInactiveInterval = -1;

/**

* Flag indicating whether this session is new or

not.

*/

private boolean isNew = true;

/**

* Flag indicating whether this session is valid

or not.

*/

private boolean isValid = false;

/**

* The string manager for this package.

*/

private StringManager sm =

StringManager.getManager("org.apache.tomcat.session")

;

/**

* The HTTP session context associated with this

session.

*/

private static HttpSessionContext sessionContext

= null;

/**

* The current accessed time for this session.

*/

private long thisAccessedTime = creationTime;

// --

------- Session Properties

/**

* Set the creation time for this session. This

method is called by the

* Manager when an existing Session instance is

reused.

*

* @param time The new creation time

*/

public void setCreationTime(long time) {

this.creationTime = time;

this.lastAccessedTime = time;

this.thisAccessedTime = time;

}

/**

* Return the session identifier for this

session.

*/

public String getId() {

return (this.id);

}

/**

* Set the session identifier for this session.

*

* @param id The new session identifier

*/

public void setId(String id) {

if ((this.id != null) && (manager != null) &&

(manager instanceof ManagerBase))

((ManagerBase) manager).remove(this);

this.id = id;

if ((manager != null) && (manager instanceof

ManagerBase))

((ManagerBase) manager).add(this);

}

/**

* Return descriptive information about this

Session implementation and

* the corresponding version number, in the

format

*

<code><description>/<version></code>.

*/

public String getInfo() {

return (this.info);

}

/**

* Return the last time the client sent a request

associated with this

* session, as the number of milliseconds since

midnight, January 1, 1970

* GMT. Actions that your application takes,

such as getting or setting

* a value associated with the session, do not

affect the access time.

*/

public long getLastAccessedTime() {

return (this.lastAccessedTime);

}

/**

* Return the Manager within which this Session

is valid.

*/

public Manager getManager() {

return (this.manager);

}

/**

* Set the Manager within which this Session is

valid.

*

* @param manager The new Manager

*/

public void setManager(Manager manager) {

this.manager = manager;

}

/**

* Return the maximum time interval, in seconds,

between client requests

* before the servlet container will invalidate

the session. A negative

* time indicates that the session should never

time out.

*

* @exception IllegalStateException if this

method is called on

* an invalidated session

*/

public int getMaxInactiveInterval() {

return (this.maxInactiveInterval);

/**

* Update the accessed time information for this session.

This method

* should be called by the context when a request comes in

for a particular

* session, even if the application does not reference it.

*/

public void access() {

this.lastAccessedTime = this.thisAccessedTime;

this.thisAccessedTime = System.currentTimeMillis();

this.isNew=false;

}

/**

* Perform the internal processing required to invalidate

this session,

* without triggering an exception if the session has

already expired.

*/

public void expire() {

// Remove this session from our manager's active

sessions

if ((manager != null) && (manager instanceof

ManagerBase))

((ManagerBase) manager).remove(this);

// Unbind any objects associated with this session

Vector results = new Vector();

Enumeration attrs = getAttributeNames();

while (attrs.hasMoreElements()) {

String attr = (String) attrs.nextElement();

results.addElement(attr);

}

Enumeration names = results.elements();

while (names.hasMoreElements()) {

String name = (String) names.nextElement();

removeAttribute(name);

}

// Mark this session as invalid

setValid(false);

}

/**

}

/**

* Set the <code>isNew</code> flag for this session.

*

* @param isNew The new value for the <code>isNew</code>

flag

*/

void setNew(boolean isNew) {

this.isNew = isNew;

}

/**

* Set the <code>isValid</code> flag for this session.

*

* @param isValid The new value for the

<code>isValid</code> flag

*/

void setValid(boolean isValid) {

this.isValid = isValid;

}

// ---

HttpSession Properties

/**

* Return the time when this session was created, in

milliseconds since

* midnight, January 1, 1970 GMT.

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*/

public long getCreationTime() {

return (this.creationTime);

}

/**

* Return the session context with which this session is

associated.

*

* @deprecated As of Version 2.1, this method is deprecated

and has no

* replacement. It will be removed in a future version of

the

* Java Servlet API.

*/

public HttpSessionContext getSessionContext() {

if (sessionContext == null)

sessionContext = new StandardSessionContext();

return (sessionContext);

}

// --

HttpSession Public Methods

/**

* Return the object bound with the specified name in this

session, or

* <code>null</code> if no object is bound with that name.

*

* @param name Name of the attribute to be returned

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*/

public Object getAttribute(String name) {

return (attributes.get(name));

}

/**

* Return an <code>Enumeration</code> of

<code>String</code> objects

* containing the names of the objects bound to this

session.

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*/

public Enumeration getAttributeNames() {

return (attributes.keys());

}

/**

* Return the object bound with the specified name in this

session, or

* <code>null</code> if no object is bound with that name.

*

* @param name Name of the value to be returned

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*

* @deprecated As of Version 2.2, this method is replaced

by

* <code>getAttribute()</code>

*/

public Object getValue(String name) {

return (getAttribute(name));

}

/**

* Return the set of names of objects bound to this

session. If there

* are no such objects, a zero-length array is returned.

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*

* @deprecated As of Version 2.2, this method is replaced

by

* <code>getAttributeNames()</code>

*/

public String[] getValueNames() {

Vector results = new Vector();

Enumeration attrs = getAttributeNames();

while (attrs.hasMoreElements()) {

String attr = (String) attrs.nextElement();

results.addElement(attr);

}

String names[] = new String[results.size()];

for (int i = 0; i < names.length; i++)

names[i] = (String) results.elementAt(i);

return (names);

}

/**

* Invalidates this session and unbinds any objects bound

to it.

*

* @exception IllegalStateException if this method is

called on

* an invalidated session

*/

public void invalidate() {

// Cause this session to expire

expire();

}

/**

* Return <code>true</code> if the client does not yet know

about the

* session, or if the client chooses not to join the

session. For

* example, if the server used only cookie-based sessions,

and the client

* has disabled the use of cookies, then a session would be

new on each

* request.

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*/

public boolean isNew() {

return (this.isNew);

}

* Remove the object bound with the specified name from this session. If

* the session does not have an object bound with this name, this method

* does nothing.

* <p>

* After this method executes, and if the object implements

* <code>HttpSessionBindingListener</code>, the container calls

* <code>valueUnbound()</code> on the object.

*

* @param name Name of the object to remove from this session.

*

* @exception IllegalStateException if this method is called on an

* invalidated session

*/

public void removeAttribute(String name) {

synchronized (attributes) {

Object object = attributes.get(name);

if (object == null)

return;

attributes.remove(name);

// System.out.println("Removing attribute " + name);

if (object instanceof HttpSessionBindingListener) {

((HttpSessionBindingListener) object).valueUnbound

(new HttpSessionBindingEvent((HttpSession) this, name));

}

}

}

* Bind an object to this session, using the specified name. If an object

* of the same name is already bound to this session, the object is

* replaced.

* <p>

* After this method executes, and if the object implements

* <code>HttpSessionBindingListener</code>, the container calls

* <code>valueBound()</code> on the object.

*

* @param name Name to which the object is bound, cannot be null

* @param value Object to be bound, cannot be null

*

* @exception IllegalArgumentException if an attempt is made to add a

* non-serializable object in an environment marked distributable.

* @exception IllegalStateException if this method is called on an

* invalidated session

*/

public void setAttribute(String name, Object value) {

if ((manager != null) && manager.getDistributable() &&

!(value instanceof Serializable))

throw new IllegalArgumentException

(sm.getString("standardSession.setAttribute.iae"));

synchronized (attributes) {

removeAttribute(name);

attributes.put(name, value);

if (value instanceof HttpSessionBindingListener)

((HttpSessionBindingListener) value).valueBound

(new HttpSessionBindingEvent((HttpSession) this, name));

}

}

// -- HttpSession Private Methods

/**

* Read a serialized version of this session object from the specified

* object input stream.

* <p>

* IMPLEMENTATION NOTE: The reference to the owning Manager

* is not restored by this method, and must be set explicitly.

*

* @param stream The input stream to read from

*

* @exception ClassNotFoundException if an unknown class is specified

* @exception IOException if an input/output error occurs

*/

private void readObject(ObjectInputStream stream)

throws ClassNotFoundException, IOException {

// Deserialize the scalar instance variables (except Manager)

creationTime = ((Long) stream.readObject()).longValue();

id = (String) stream.readObject();

lastAccessedTime = ((Long) stream.readObject()).longValue();

maxInactiveInterval = ((Integer) stream.readObject()).intValue();

isNew = ((Boolean) stream.readObject()).booleanValue();

isValid = ((Boolean) stream.readObject()).booleanValue();

// Deserialize the attribute count and attribute values

int n = ((Integer) stream.readObject()).intValue();

for (int i = 0; i < n; i++) {

String name = (String) stream.readObject();

Object value = (Object) stream.readObject();

attributes.put(name, value);

}

}

/**

* Write a serialized version of this session object to the specified

* object output stream.

* <p>

* IMPLEMENTATION NOTE: The owning Manager will not be stored

* in the serialized representation of this Session. After calling

* <code>readObject()</code>, you must set the associated Manager

* explicitly.

* <p>

* IMPLEMENTATION NOTE: Any attribute that is not Serializable

* will be silently ignored. If you do not want any such attributes,

* be sure the <code>distributable</code> property of our associated

* Manager is set to <code>true</code>.

*

* @param stream The output stream to write to

*

* @exception IOException if an input/output error occurs

*/

private void writeObject(ObjectOutputStream stream) throws IOException {

// Write the scalar instance variables (except Manager)

stream.writeObject(new Long(creationTime));

stream.writeObject(id);

stream.writeObject(new Long(lastAccessedTime));

stream.writeObject(new Integer(maxInactiveInterval));

stream.writeObject(new Boolean(isNew));

stream.writeObject(new Boolean(isValid));

// Accumulate the names of serializable attributes

Vector results = new Vector();

Enumeration attrs = getAttributeNames();

while (attrs.hasMoreElements()) {

String attr = (String) attrs.nextElement();

Object value = attributes.get(attr);

if (value instanceof Serializable)

results.addElement(attr);

}

// Serialize the attribute count and the attribute values

stream.writeObject(new Integer(results.size()));

Enumeration names = results.elements();

while (names.hasMoreElements()) {

String name = (String) names.nextElement();

stream.writeObject(name);

stream.writeObject(attributes.get(name));

}

}

crosscut invalidate(StandardSession s): s & (int getMaxInactiveInterval() |

long getCreationTime() |

Object getAttribute(String) |

Enumeration getAttributeNames() |

String[] getValueNames() |

void invalidate() |

boolean isNew() |

void removeAttribute(String) |

void setAttribute(String, Object));

static advice(StandardSession s): invalidate(s) {

before {

if (!s.isValid())

throw new IllegalStateException

(s.sm.getString("standardSession."

+ thisJoinPoint.methodName

+ ".ise"));

}

}

}

// -- Private Class

/**

* This class is a dummy implementation of the <code>HttpSessionContext</code>

* interface, to conform to the requirement that such an object be returned

* when <code>HttpSession.getSessionContext()</code> is called.

*

* @author Craig R. McClanahan

*

* @deprecated As of Java Servlet API 2.1 with no replacement. The

* interface will be removed in a future version of this API.

*/

final class StandardSessionContext implements HttpSessionContext {

private Vector dummy = new Vector();

/**

* Return the session identifiers of all sessions defined

* within this context.

*

* @deprecated As of Java Servlet API 2.1 with no replacement.

* This method must return an empty <code>Enumeration</code>

* and will be removed in a future version of the API.

*/

public Enumeration getIds() {

return (dummy.elements());

}

/**

* Return the <code>HttpSession</code> associated with the

* specified session identifier.

*

* @param id Session identifier for which to look up a session

*

* @deprecated As of Java Servlet API 2.1 with no replacement.

* This method must return null and will be removed in a

* future version of the API.

*/

public HttpSession getSession(String id) {

return (null);

}

}

Good (better) modularity

56

private long lastAccessed = creationTime;

private int inactiveInterval = -1;

void accessed() {

// set last accessed to thisAccessTime as it will be left over

// from the previous access

lastAccessed = thisAccessTime;

thisAccessTime = System.currentTimeMillis();

validate();

}

void validate() {

// if we have an inactive interval, check to see if we've exceeded

it

if (inactiveInterval != -1) {

int thisInterval =

(int)(System.currentTimeMillis() - lastAccessed) / 1000;

if (thisInterval > inactiveInterval) {

invalidate();

}

}

}

public long getLastAccessedTime() {

if (valid) {

return lastAccessed;

} else {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

}

public long getLastAccessedTime() {

return lastAccessed;

}

private long lastAccessed = creationTime;

void accessed() {

// set last accessed to thisAccessTime as it will be left over

// from the previous access

lastAccessed = thisAccessTime;

thisAccessTime = System.currentTimeMillis();

}

if (inactiveInterval != -1) {

int thisInterval =

(int)(System.currentTimeMillis() -

lastAccessed) / 1000;

if (thisInterval > inactiveInterval) {

invalidate();

ServerSessionManager ssm =

ServerSessionManager.getManager();

ssm.removeSession(this);

}

}

}

private long lastAccessedTime = creationTime;

/**

* Return the last time the client sent a request

associated with this

* session, as the number of milliseconds since midnight,

January 1, 1970

* GMT. Actions that your application takes, such as

getting or setting

* a value associated with the session, do not affect the

access time.

*/

public long getLastAccessedTime() {

return (this.lastAccessedTime);

}

this.lastAccessedTime = time;

/*

* ==

*

* The Apache Software License, Version 1.1

*

* Copyright (c) 1999 The Apache Software Foundation. All rights

* reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. The end-user documentation included with the redistribution, if

* any, must include the following acknowlegement:

* "This product includes software developed by the

* Apache Software Foundation (http://www.apache.org/)."

* Alternately, this acknowlegement may appear in the software

itself,

* if and wherever such third-party acknowlegements normally appear.

*

* 4. The names "The Jakarta Project", "Tomcat", and "Apache Software

* Foundation" must not be used to endorse or promote products

derived

* from this software without prior written permission. For written

* permission, please contact apache@apache.org.

*

* 5. Products derived from this software may not be called "Apache"

* nor may "Apache" appear in their names without prior written

* permission of the Apache Group.

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

* ==

*

* This software consists of voluntary contributions made by many

* individuals on behalf of the Apache Software Foundation. For more

* information on the Apache Software Foundation, please see

* <http://www.apache.org/>.

*

* [Additional notices, if required by prior licensing conditions]

*

*/

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;

import org.apache.tomcat.util.StringManager;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Core implementation of an application level session

*

* @author James Duncan Davidson [duncan@eng.sun.com]

* @author Jason Hunter [jch@eng.sun.com]

* @author James Todd [gonzo@eng.sun.com]

*/

public class ApplicationSession implements HttpSession {

private StringManager sm =

StringManager.getManager("org.apache.tomcat.session");

private Hashtable values = new Hashtable();

private String id;

private ServerSession serverSession;

private Context context;

private long creationTime = System.currentTimeMillis();;

private long thisAccessTime = creationTime;

private boolean valid = true;

ApplicationSession(String id, ServerSession serverSession,

Context context) {

this.serverSession = serverSession;

this.context = context;

this.id = id;

this.inactiveInterval = context.getSessionTimeOut();

if (this.inactiveInterval != -1) {

this.inactiveInterval *= 60;

}

}

ServerSession getServerSession() {

return serverSession;

}

/**

* Called by context when request comes in so that accesses and

* inactivities can be dealt with accordingly.

*/

// HTTP SESSION IMPLEMENTATION METHODS

public String getId() {

if (valid) {

return id;

} else {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

}

public long getCreationTime() {

if (valid) {

return creationTime;

} else {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

}

/**

*

* @deprecated

*/

public HttpSessionContext getSessionContext() {

return new SessionContextImpl();

}

public void invalidate() {

serverSession.removeApplicationSession(context);

// remove everything in the session

Enumeration enum = values.keys();

while (enum.hasMoreElements()) {

String name = (String)enum.nextElement();

removeValue(name);

}

valid = false;

}

public boolean isNew() {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

if (thisAccessTime == creationTime) {

return true;

} else {

return false;

}

}

/**

* @deprecated

*/

public void putValue(String name, Object value) {

setAttribute(name, value);

}

public void setAttribute(String name, Object value) {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

if (name == null) {

String msg = sm.getString("applicationSession.value.iae");

throw new IllegalArgumentException(msg);

}

removeValue(name); // remove any existing binding

if (value != null && value instanceof HttpSessionBindingListener) {

HttpSessionBindingEvent e =

new HttpSessionBindingEvent(this, name);

((HttpSessionBindingListener)value).valueBound(e);

}

values.put(name, value);

}

/**

* @deprecated

*/

public Object getValue(String name) {

return getAttribute(name);

}

public Object getAttribute(String name) {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

if (name == null) {

String msg = sm.getString("applicationSession.value.iae");

throw new IllegalArgumentException(msg);

}

return values.get(name);

}

/**

* @deprecated

*/

public String[] getValueNames() {

Enumeration e = getAttributeNames();

Vector names = new Vector();

while (e.hasMoreElements()) {

names.addElement(e.nextElement());

}

String[] valueNames = new String[names.size()];

names.copyInto(valueNames);

return valueNames;

}

public Enumeration getAttributeNames() {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

Hashtable valuesClone = (Hashtable)values.clone();

return (Enumeration)valuesClone.keys();

}

/**

* @deprecated

*/

public void removeValue(String name) {

removeAttribute(name);

}

public void removeAttribute(String name) {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

if (name == null) {

String msg = sm.getString("applicationSession.value.iae");

throw new IllegalArgumentException(msg);

}

Object o = values.get(name);

if (o instanceof HttpSessionBindingListener) {

HttpSessionBindingEvent e =

new HttpSessionBindingEvent(this,name);

((HttpSessionBindingListener)o).valueUnbound(e);

}

values.remove(name);

}

public void setMaxInactiveInterval(int interval) {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

inactiveInterval = interval;

}

public int getMaxInactiveInterval() {

if (! valid) {

String msg = sm.getString("applicationSession.session.ise");

throw new IllegalStateException(msg);

}

return inactiveInterval;

}

}

//---

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;

import org.apache.tomcat.util.StringManager;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Core implementation of a server session

*

* @author James Duncan Davidson [duncan@eng.sun.com]

* @author James Todd [gonzo@eng.sun.com]

*/

public class ServerSession {

private StringManager sm =

StringManager.getManager("org.apache.tomcat.session");

private Hashtable values = new Hashtable();

private Hashtable appSessions = new Hashtable();

private String id;

private long creationTime = System.currentTimeMillis();;

private long thisAccessTime = creationTime;

private long lastAccessed = creationTime;

private int inactiveInterval = -1;

ServerSession(String id) {

this.id = id;

}

public String getId() {

return id;

}

public long getCreationTime() {

return creationTime;

}

public long getLastAccessedTime() {

return lastAccessed;

}

public ApplicationSession getApplicationSession(Context context,

boolean create) {

ApplicationSession appSession =

(ApplicationSession)appSessions.get(context);

if (appSession == null && create) {

// XXX

// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);

appSessions.put(context, appSession);

}

// XXX

// make sure that we haven't gone over the end of our

// inactive interval -- if so, invalidate and create

// a new appSession

return appSession;

}

void removeApplicationSession(Context context) {

appSessions.remove(context);

}

/**

* Called by context when request comes in so that accesses and

* inactivities can be dealt with accordingly.

*/

void validate()

ynchronized void invalidate() {

Enumeration enum = appSessions.keys();

while (enum.hasMoreElements()) {

Object key = enum.nextElement();

ApplicationSession appSession =

(ApplicationSession)appSessions.get(key);

appSession.invalidate();

}

}

public void putValue(String name, Object value) {

if (name == null) {

String msg = sm.getString("serverSession.value.iae");

throw new IllegalArgumentException(msg);

}

removeValue(name); // remove any existing binding

values.put(name, value);

}

public Object getValue(String name) {

if (name == null) {

String msg = sm.getString("serverSession.value.iae");

throw new IllegalArgumentException(msg);

}

return values.get(name);

}

public Enumeration getValueNames() {

return values.keys();

}

public void removeValue(String name) {

values.remove(name);

}

public void setMaxInactiveInterval(int interval) {

inactiveInterval = interval;

}

public int getMaxInactiveInterval() {

return inactiveInterval;

}

// XXX

// sync'd for safty -- no other thread should be getting something

// from this while we are reaping. This isn't the most optimal

// solution for this, but we'll determine something else later.

synchronized void reap() {

Enumeration enum = appSessions.keys();

while (enum.hasMoreElements()) {

Object key = enum.nextElement();

ApplicationSession appSession =

(ApplicationSession)appSessions.get(key);

appSession.validate();

}

}

}

;

/**

* Standard implementation of the Session

interface. This object is

* serializable, so that it can be stored in

persistent storage or transferred

* to a different JVM for distributable session

support.

* <p>

* IMPLEMENTATION NOTE: An instance of

this class represents both the

* internal (Session) and application level

(HttpSession) view of the session.

* However, because the class itself is not

declared public, Java logic outside

* of the <code>org.apache.tomcat.session</code>

package cannot cast an

* HttpSession view of this instance back to a

Session view.

*

* @author Craig R. McClanahan

* @version $Revision: 1.2 $ $Date: 2000/05/15

17:54:10 $

*/

final class StandardSession

implements HttpSession, Session {

// --

----------------- Constructors

/**

* Construct a new Session associated with

the specified Manager.

*

* @param manager The manager with which this

Session is associated

*/

public StandardSession(Manager manager) {

super();

this.manager = manager;

}

/**

* The last accessed time for this Session.

*/

private long lastAccessedTime = creationTime;

/**

* The Manager with which this Session is

associated.

*/

private Manager manager = null;

/**

* The maximum time interval, in seconds,

between client requests before

* the servlet container may invalidate this

session. A negative time

* indicates that the session should never

time out.

*/

private int maxInactiveInterval = -1;

/**

* Flag indicating whether this session is

new or not.

*/

private boolean isNew = true;

/**

* Flag indicating whether this session is

valid or not.

*/

private boolean isValid = false;

/**

* The string manager for this package.

*/

private StringManager sm =

StringManager.getManager("org.apache.tomcat.sessi

on");

/**

* The HTTP session context associated with

this session.

*/

private static HttpSessionContext

sessionContext = null;

/**

* The current accessed time for this

session.

*/

private long thisAccessedTime = creationTime;

// --

----------- Session Properties

/**

* Set the creation time for this session.

This method is called by the

* Manager when an existing Session instance

is reused.

*

* @param time The new creation time

*/

public void setCreationTime(long time) {

this.creationTime = time;

this.lastAccessedTime = time;

this.thisAccessedTime = time;

}

/**

* Return the session identifier for this

session.

*/

public String getId() {

return (this.id);

}

/**

* Set the session identifier for this

session.

*

* @param id The new session identifier

*/

public void setId(String id) {

if ((this.id != null) && (manager !=

null) &&

(manager instanceof ManagerBase))

((ManagerBase) manager).remove(this);

this.id = id;

if ((manager != null) && (manager

instanceof ManagerBase))

((ManagerBase) manager).add(this);

}

/**

* Return descriptive information about this

Session implementation and

* the corresponding version number, in the

format

*

<code><description>/<version></code>.

*/

public String getInfo() {

return (this.info);

}

/**

* Return the Manager within which this

Session is valid.

*/

public Manager getManager() {

return (this.manager);

}

/**

* Set the Manager within which this Session

is valid.

*

* @param manager The new Manager

*/

public void setManager(Manager manager) {

this.manager = manager;

}

/**

* Return the maximum time interval, in

seconds, between client requests

* before the servlet container will

invalidate the session. A negative

* time indicates that the session should

never time out.

*

* @exception IllegalStateException if this

method is called on

* an invalidated session

*/

public int getMaxInactiveInterval() {

return (this.maxInactiveInterval);

/**

* Perform the internal processing required to

invalidate this session,

* without triggering an exception if the session has

already expired.

*/

public void expire() {

// Remove this session from our manager's active

sessions

if ((manager != null) && (manager instanceof

ManagerBase))

((ManagerBase) manager).remove(this);

// Unbind any objects associated with this session

Vector results = new Vector();

Enumeration attrs = getAttributeNames();

while (attrs.hasMoreElements()) {

String attr = (String) attrs.nextElement();

results.addElement(attr);

}

Enumeration names = results.elements();

while (names.hasMoreElements()) {

String name = (String) names.nextElement();

removeAttribute(name);

}

// Mark this session as invalid

setValid(false);

}

/**

}

/**

* Set the <code>isNew</code> flag for this session.

*

* @param isNew The new value for the

<code>isNew</code> flag

*/

void setNew(boolean isNew) {

this.isNew = isNew;

}

/**

* Set the <code>isValid</code> flag for this session.

*

* @param isValid The new value for the

<code>isValid</code> flag

*/

void setValid(boolean isValid) {

this.isValid = isValid;

}

// ---

HttpSession Properties

/**

* Return the time when this session was created, in

milliseconds since

* midnight, January 1, 1970 GMT.

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*/

public long getCreationTime() {

return (this.creationTime);

}

/**

* Return the session context with which this session

is associated.

*

* @deprecated As of Version 2.1, this method is

deprecated and has no

* replacement. It will be removed in a future

version of the

* Java Servlet API.

*/

public HttpSessionContext getSessionContext() {

if (sessionContext == null)

sessionContext = new StandardSessionContext();

return (sessionContext);

}

// --

HttpSession Public Methods

/**

* Return the object bound with the specified name in

this session, or

* <code>null</code> if no object is bound with that

name.

*

* @param name Name of the attribute to be returned

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*/

public Object getAttribute(String name) {

return (attributes.get(name));

}

/**

* Return an <code>Enumeration</code> of

<code>String</code> objects

* containing the names of the objects bound to this

session.

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*/

public Enumeration getAttributeNames() {

return (attributes.keys());

}

/**

* Return the object bound with the specified name in

this session, or

* <code>null</code> if no object is bound with that

name.

*

* @param name Name of the value to be returned

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*

* @deprecated As of Version 2.2, this method is

replaced by

* <code>getAttribute()</code>

*/

public Object getValue(String name) {

return (getAttribute(name));

}

/**

* Return the set of names of objects bound to this

session. If there

* are no such objects, a zero-length array is

returned.

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*

* @deprecated As of Version 2.2, this method is

replaced by

* <code>getAttributeNames()</code>

*/

public String[] getValueNames() {

Vector results = new Vector();

Enumeration attrs = getAttributeNames();

while (attrs.hasMoreElements()) {

String attr = (String) attrs.nextElement();

results.addElement(attr);

}

String names[] = new String[results.size()];

for (int i = 0; i < names.length; i++)

names[i] = (String) results.elementAt(i);

return (names);

}

/**

* Invalidates this session and unbinds any objects

bound to it.

*

* @exception IllegalStateException if this method is

called on

* an invalidated session

*/

public void invalidate() {

// Cause this session to expire

expire();

}

/**

* Return <code>true</code> if the client does not yet

know about the

* session, or if the client chooses not to join the

session. For

* example, if the server used only cookie-based

sessions, and the client

* has disabled the use of cookies, then a session

would be new on each

* request.

*

* @exception IllegalStateException if this method is

called on an

* invalidated session

*/

public boolean isNew() {

return (this.isNew);

}

* Remove the object bound with the specified name from this session. If

* the session does not have an object bound with this name, this method

* does nothing.

* <p>

* After this method executes, and if the object implements

* <code>HttpSessionBindingListener</code>, the container calls

* <code>valueUnbound()</code> on the object.

*

* @param name Name of the object to remove from this session.

*

* @exception IllegalStateException if this method is called on an

* invalidated session

*/

public void removeAttribute(String name) {

synchronized (attributes) {

Object object = attributes.get(name);

if (object == null)

return;

attributes.remove(name);

// System.out.println("Removing attribute " + name);

if (object instanceof HttpSessionBindingListener) {

((HttpSessionBindingListener) object).valueUnbound

(new HttpSessionBindingEvent((HttpSession) this, name));

}

}

}

* Bind an object to this session, using the specified name. If an object

* of the same name is already bound to this session, the object is

* replaced.

* <p>

* After this method executes, and if the object implements

* <code>HttpSessionBindingListener</code>, the container calls

* <code>valueBound()</code> on the object.

*

* @param name Name to which the object is bound, cannot be null

* @param value Object to be bound, cannot be null

*

* @exception IllegalArgumentException if an attempt is made to add a

* non-serializable object in an environment marked distributable.

* @exception IllegalStateException if this method is called on an

* invalidated session

*/

public void setAttribute(String name, Object value) {

if ((manager != null) && manager.getDistributable() &&

!(value instanceof Serializable))

throw new IllegalArgumentException

(sm.getString("standardSession.setAttribute.iae"));

synchronized (attributes) {

removeAttribute(name);

attributes.put(name, value);

if (value instanceof HttpSessionBindingListener)

((HttpSessionBindingListener) value).valueBound

(new HttpSessionBindingEvent((HttpSession) this, name));

}

}

// -- HttpSession Private Methods

/**

* Read a serialized version of this session object from the specified

* object input stream.

* <p>

* IMPLEMENTATION NOTE: The reference to the owning Manager

* is not restored by this method, and must be set explicitly.

*

* @param stream The input stream to read from

*

* @exception ClassNotFoundException if an unknown class is specified

* @exception IOException if an input/output error occurs

*/

private void readObject(ObjectInputStream stream)

throws ClassNotFoundException, IOException {

// Deserialize the scalar instance variables (except Manager)

creationTime = ((Long) stream.readObject()).

isValid = ((Boolean) stream.readObject()).booleanValue();

// Deserialize the attribute count and attribute values

int n = ((Integer) stream.readObject()).intValue();

for (int i = 0; i < n; i++) {

String name = (String) stream.readObject();

Object value = (Object) stream.readObject();

attributes.put(name, value);

}

}

/**

* Write a serialized version of this session object to the specified

* object output stream.

* <p>

* IMPLEMENTATION NOTE: The owning Manager will not be stored

* in the serialized representation of this Session. After calling

* <code>readObject()</code>, you must set the associated Manager

* explicitly.

* <p>

* IMPLEMENTATION NOTE: Any attribute that is not Serializable

* will be silently ignored. If you do not want any such attributes,

* be sure the <code>distributable</code> property of our associated

* Manager is set to <code>true</code>.

*

* @param stream The output stream to write to

*

* @exception IOException if an input/output error occurs

*/

private void writeObject(ObjectOutputStream stream) throws IOException {

// Write the scalar instance variables (except Manager)

stream.writeObject(new Long(creationTime));

stream.writeObject(id);

stream.writeObject(new Long(lastAccessedTime));

stream.writeObject(new Integer(maxInactiveInterval));

stream.writeObject(new Boolean(isNew));

stream.writeObject(new Boolean(isValid));

// Accumulate the names of serializable attributes

Vector results = new Vector();

Enumeration attrs = getAttributeNames();

while (attrs.hasMoreElements()) {

String attr = (String) attrs.nextElement();

Object value = attributes.get(attr);

if (value instanceof Serializable)

results.addElement(attr);

}

// Serialize the attribute count and the attribute values

stream.writeObject(new Integer(results.size()));

Enumeration names = results.elements();

while (names.hasMoreElements()) {

String name = (String) names.nextElement();

stream.writeObject(name);

stream.writeObject(attributes.get(name));

}

}

crosscut invalidate(StandardSession s): s & (int getMaxInactiveInterval() |

long getCreationTime() |

Object getAttribute(String) |

Enumeration getAttributeNames() |

String[] getValueNames() |

void invalidate() |

boolean isNew() |

void removeAttribute(String) |

void setAttribute(String, Object));

static advice(StandardSession s): invalidate(s) {

before {

if (!s.isValid())

throw new IllegalStateException

(s.sm.getString("standardSession."

+ thisJoinPoint.methodName

+ ".ise"));

}

}

}

// -- Private Class

/**

* This class is a dummy implementation of the <code>HttpSessionContext</code>

* interface, to conform to the requirement that such an object be returned

* when <code>HttpSession.getSessionContext()</code> is called.

*

* @author Craig R. McClanahan

*

* @deprecated As of Java Servlet API 2.1 with no replacement. The

* interface will be removed in a future version of this API.

*/

final class StandardSessionContext implements HttpSessionContext {

private Vector dummy = new Vector();

/**

* Return the session identifiers of all sessions defined

* within this context.

*

* @deprecated As of Java Servlet API 2.1 with no replacement.

* This method must return an empty <code>Enumeration</code>

* and will be removed in a future version of the API.

*/

public Enumeration getIds() {

return (dummy.elements());

}

/**

* Return the <code>HttpSession</code> associated with the

* specified session identifier.

*

* @param id Session identifier for which to look up a session

*

* @deprecated As of Java Servlet API 2.1 with no replacement.

* This method must return null and will be removed in a

* future version of the API.

*/

public HttpSession getSession(String id) {

return (null);

}

}

separated – implementation

of a concern can be treated

as relatively separate entity

localized – implementation

of a concern appears in one

part of program

modular – above + has a

clear, well defined interface

to rest of system

Accounts of aspect-orientation

• problem: tyranny of single decomposition

– cannot, in a single decomposition, modularize all concerns

– bad modularity brittle (non-adaptive), fragile, buggy mess

• principle: aspects …

– concerns that are local in the alternate decomposition

– aspect of is different than part of

• structure: crosscutting

– relationship between decompositions such that

• some concerns are localized (aspects)

• and others are potentially spread out

• mechanism: join point mechanisms

– coordinates effect of programs from different decompositions

UW CSE P504 57

AspectJ: sketch of an example

UW CSE P504 58

DisplayUpdating

2Point

getX()

getY()

setX(int)

setY(int)

moveBy(int, int)

draw()

Line

getP1()

getP2()

setP1(Point)

setP2(Point)

moveBy(int, int)

draw()

FigureElement

moveBy(int, int)

refresh()

after(): call(void FigureElement+.set*(..))
|| call(void FigureElement.moveBy(int, int))

{
Display.update();

}

after(): call(void FigureElement+.set*(..))

|| call(void

FigureElement.moveBy(int, int))

{

Display.update();

}

Administrivia

• You’ll need your UW NetID

• Mailing list is set up (automatically using your NetID)

• No official office hours – phone, email, etc. posted on

the web – and I try to be around a bit before and after

lecture

• I will be gone for two lectures (January 25 and

February 22) – Yuriy and Reid will lecture,

respectively

• There are two holidays (January 18 and February 15)

• I haven’t decided about March 15th – final or final

class or …

UW CSE P504 59

Expected work

• Structured, 200-400 word reports on your choice of 10 assigned

papers during the quarter (20% of grade, 2% each)

• Two state-of-the-research reports (60% of the grade, 30%

each). These are secondary research reports

– on topics that you select – and we approve – within the

scope of the three parts of the course,

– with identification of pertinent papers and materials (perhaps

with help from us), perhaps some hands-on experience for

some kinds of topics, and

– a written, scholarly report on the topic and your analysis of it,

complete with citations, open questions, etc.

• Class participation during lecture and on online forums (10%)

• Other 10% to be decided

UW CSE P504 60

Structured reports I

I. 1-2 sentences: what is the major claim of the paper?

II. 2-3 sentences: what is the form of the evidence
supporting the claim?

III. 2-3 sentences: what are the strongest points of the
paper?

IV. 2-3 sentences: what are the weakest points of the
paper?

V. Remainder: other comments/questions about the
work

• The suggested lengths are guidelines: you can use
the space differently. But I-IV must be addressed
explicitly

UW CSE P504 61

Structured reports II

• Due dates – these can come in earlier

– 1st and 2nd: due 11PM Sunday January 17th

– 3rd and 4th: due 11PM Sunday January 31th

– 5th and 6th: due 11PM Sunday February 14th

– 7th and 8th: due 11PM Sunday February 28th

– 9th and 10th: due 11PM Sunday March 14th

• Done individually

• Submitted through UW Catalyst dropbox (link also on

the 504 web) – you’ll need your UW NetID
– https://catalysttools.washington.edu/collectit/dropbox/notkin/8463

UW CSE P504 62

https://catalysttools.washington.edu/collectit/dropbox/notkin/8463

State-of-the-research reports

• Can be done individually or in groups of two or three

– You can work differently for each report – it’s up to you

– Barring anything really unusual, all participants in a group

share the same grade for a report

• The reports will be posted for comment by the staff and other

students in the course (details forthcoming)

• The web points at some ―roadmap‖ papers that have a general

feel like what we expect

• Due dates are yet to be decided

– There will be an earlier due date (for each report) for the

agreement upon a topic, a first-cut at papers to read,

identification of the group (if any), etc.

UW CSE P504 63

Class participation

• It’s all about me – and I don’t learned a darned thing

if you don’t participate

• Questions and comments in lecture

• Questions and comments outside of lecture

• Comments and discussions on the state-of-the-

research reports

• …

UW CSE P504 64

From software design to architecture

UW CSE P504 65

Design

• Mid-1960’s present

• Structured design, information hiding, abstract
data types, aspect-orientation, …

Architecture

• Mid-1990’s present

• Architectural styles, architecture description
languages, patterns, frameworks, …

Software Architecture

Perry and Wolf. Foundations for the

Study of Software Architecture. ACM

Software Engineering Notes (Oct. 1992)

―…architecture is concerned with the

selection of architectural elements, their

interactions, and the constraints on

those elements and the interactions

necessary to provide a framework in

which to satisfy the requirements and

serve as a basis for the design.‖

Garlan and Shaw. Software Architecture

Perspectives on an Emerging Discipline

(1996) [TR 1994]

―...beyond the algorithms and data

structures of the computation; designing

and specifying the overall system

structure emerges as a new kind of

problem. Structural issues include gross

organization and global control

structure; protocols for communication,

synchronization, and data access;

assignment of functionality to design

elements; physical distribution;

composition of design elements; scaling

and performance; and selection among

design alternatives.‖

UW CSE P504 66

Two primary objectives

• Capturing, cataloguing and exploiting experience in

software designs

• Allowing reasoning about classes of designs

UW CSE P504 67

UW CSE P504 68

Box-and-arrow diagrams:
taken from the web without attribution

UW CSE P504 69

These diagrams have value

• You can find them all over the web, in textbooks, in

technical documents, in research papers, over

whiteboards in your office, on napkins in the cafeteria, etc.

• Another Christopher Alexander quotation: ―Drawings help

people to work out intricate relationships between parts.‖

• At the same time, they are generally ill-defined: what does

a box represent? an arrow? a layer? adjacent boxes?

etc.

• One view of software architecture research is to determine

ways to give these diagrams clearer semantics and thus

additional value

UW CSE P504 70

Compilers I

• The first compilers had ad hoc designs

• Over time, as a number of compilers were built, the

designs became more structured

– Experience yielded benefits

• Compiler phases, symbol table, etc.

– Plenty of theoretical advances

• Finite state machines, parsing, ...

UW CSE P504 71

Compilers II

• Compilers are perhaps the best example of shared
experience in design

– Lots of tools that capture common aspects

– Undergraduate courses build compilers

– Most compilers look pretty similar in structure

• But we still don’t fully generate compilers

– Despite lots of effort and lots of money

– In any case, the code in compilers is often less clean
than the designs

• Despite this, the perception of a shared design gives
leverage

– Communication among programmers

– Selected deviations can be explained more concisely
and with clearer reasoning

UW CSE P504 72

Examples of architectures

• Blackboard

• Client-server

• Database-centered architecture

• Distributed computing

• Event-driven architecture

• Peer-to-peer

• Pipes and filters

• Plugin

• Service-oriented architecture

• Three-tier model

• …

Another motivation:

architectural mismatch

• Garlan, Allen, Ockerbloom tried to build a toolset to
support software architecture definition from existing
components

– OODB (OBST)

– graphical user interface toolkit (Interviews)

– RPC mechanism (MIG/Mach RPC)

– Event-based tool integration mechanism (Softbench)

• It went to hell in a hand-basket, not because the pieces
didn’t work, but because they didn’t fit together

• Architectural Mismatch: Why Reuse Is So Hard. IEEE
Software (Nov. 1995)

– Reprised in July 2009: Architectural Mismatch: Why
Reuse Is Still So Hard.

UW CSE P504 73

Mismatches included

• Excessive code size

• Poor performance

• Needed to modify out-of-the-box components (e.g.,
memory allocation)

• Error-prone construction process

• …

• The claim is that many of the problems were of an
architectural nature

– What assumptions are made, need they be made,
etc.?

• With some forethought, many of these mismatches could,
in principle, be avoided

UW CSE P504 74

Some classic definitions:
http://www.sei.cmu.edu/architecture/definitions.html

• An architecture is the set of significant decisions about the
organization of a software system, the selection of the structural
elements and their interfaces by which the system is composed,
together with their behavior as specified in the collaborations
among those elements, the composition of these structural and
behavioral elements into progressively larger subsystems, and
the architectural style that guides this organization---these
elements and their interfaces, their collaborations, and their
composition [Booch, Rumbaugh, and Jacobson, 1999]

• The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time [Wolf and Perry].

• ...an abstract system specification consisting primarily of
functional components described in terms of their behaviors and
interfaces and component-component interconnections [Hayes-
Roth].

UW CSE P504 75

Components and connectors

• Software architectures are generally seen as comprising
components and connectors

• Components define the basic computations comprising
the system

– Abstract data types, filters, etc.

• Connectors define the interconnections between
components

– Procedure call, event announcement, asynchronous
message sends, etc.

• The line between them may be fuzzy at times

– Ex: A connector might (de)serialize data, but can it
perform other, richer computations? How about
encryption/decryption?

UW CSE P504 76

UW CSE P504 77

Architectural style

• Defines the vocabulary of components and
connectors for a family (style)

• Constraints on the elements and their combination

– Topological constraints (no cycles,
register/announce relationships, etc.)

– Execution constraints (timing, etc.)

• By choosing a style, one gets all the known
properties of that style

– For any given architecture in that style

• These properties can be quite broad

– Ex: performance, lack of deadlock, ease of making
particular classes of changes, etc.

Not just boxes and arrows

• Consider pipes & filters, for example (Garlan and Shaw)

– Pipes must compute local transformations

– Filters must not share state with other filters

– There must be no cycles

• If these constraints are not satisfied, it’s not a pipe & filter

system

– One can’t tell this from a picture

– One can formalize these constraints (we’ll come back

to this next week)

UW CSE P504 78

scan parse optimize generate

Specializations

• Architectural styles can have specializations

– A pipeline might further constrain an architecture

to a linear sequence of filters connected by pipes

– A pipeline would have all properties that the pipe

& filter style has, plus more

UW CSE P504 79

UW CSE P504 80

C2 Architecture:
UC Irvine (Taylor et al.)

• Based on generalization of a collection of designs of user

interface systems http://www.ics.uci.edu/pub/c2/c2.html

• Informally, a C2 architecture is a network of concurrent

components linked together by connectors

http://www.ics.uci.edu/pub/c2/c2.html

C2 Composition

• The top of a component may be connected to the

bottom of a single connector

• The bottom of a component may be connected to the

top of a single connector

• There is no bound on the number of components or

connectors that may be attached to a single

connector

• When two connectors are attached to each other, it

must be from the bottom of one to the top of the other

UW CSE P504 81

C2 Communication

• Solely by exchanging messages

• Each component has a top and bottom domain

– The top specifies the set of notifications to which a
component responds, and the set of requests it emits
upwards

– The bottom specifies the set of notifications that a
component emits downwards and the set of requests
to which it responds

• Central principle: limited visibility (substrate
independence)

– A component within the hierarchy can only be aware of
components ―above‖ it and is completely unaware of
the components ―beneath‖ it

UW CSE P504 82

What’s coming later on?

• Design-based software architecture

– Formal reasoning (WRIGHT, etc.)

– Static vs. dynamic architectures

• Property-based software architecture

– Autonomic systems

– Relationship to model-based design

– Examples from automotive or related domains

• Inspiration from biological systems … and an

example in some depth

UW CSE P504 83

Suggestions for third topic…

• …after architecture and tools?

UW CSE P504 84

Questions?

UW CSE P504 85

